Simulations of the erythrocyte cytoskeleton at large deformation. I. Microscopic models.
نویسندگان
چکیده
Three variations of a polymer chain model for the human erythrocyte cytoskeleton are used in large deformation simulations of microscopic membrane patches. Each model satisfies an experimental observation that the contour length of the spectrin tetramers making up the erythrocyte cytoskeleton is roughly square root of 7 times the end-to-end distance of the tetramer in vivo. Up to modest stress, each brushy cytoskeletal network behaves, consistently, like a low-temperature, planar network of Hookean springs, with a model-dependent effective spring constant, keff, in the range of 20-40 kBT/s(o)2, where T is the temperature and s(o) is the force-free spring length. However, several features observed at large deformation distinguish these models from spring networks: 1) Network dimensions do not expand without bound in approaching a critical isotropic tension (square root of 3 keff) that is a characteristic limit of Hookean spring nets. 2) In surface compression, steric interactions among the chain elements prevent a network collapse that is otherwise observed in compression of planar triangulated networks of springs. 3) Under uniaxial surface tension, isotropy of the network disappears only as the network is stretched by more than 50% of its equilibrium dimensions. Also found are definitively non-Hookean regimes in the stress dependence of the elastic moduli. Lastly, determinations of elastic moduli from both fluctuations and stress/strain relations prove to be consistent, implying that consistency should be expected among experimental determinations of these quantities.
منابع مشابه
Simulations of the erythrocyte cytoskeleton at large deformation. II. Micropipette aspiration.
Coarse-grained molecular models of the erythrocyte membrane's spectrin cytoskeleton are presented in Monte Carlo simulations of whole cells in micropipette aspiration. The nonlinear chain elasticity and sterics revealed in more microscopic cytoskeleton models (developed in a companion paper; Boey et al., 1998. Biophys. J. 75:1573-1583) are faithfully represented here by two- and three-body effe...
متن کاملApplication of Nano-Contact Mechanics Models in Manipulation of Biological Nano-Particle: FE Simulation
Contact mechanics is related to the deformation study of solids that meet each other at one or more points. The physical and mathematical formulation of the problem is established upon the mechanics of materials and continuum mechanics and focuses on computations involving bodies with different characteristics in static or dynamic contact. Contact mechanics gives essential information for the s...
متن کاملCytoskeletal dynamics of human erythrocyte.
The human erythrocyte (red blood cell, RBC) demonstrates extraordinary ability to undergo reversible large deformation and fluidity. Such mechanical response cannot be consistently rationalized on the basis of fixed connectivity of the cell cytoskeleton that comprises the spectrin molecular network tethered to phospholipid membrane. Active topological remodeling of spectrin network has been pos...
متن کاملMolecularly based analysis of deformation of spectrin network and human erythrocyte
We examine the large deformation elastic response of the spectrin network in a human red blood cell (RBC) on the basis of molecular-level constitutive laws. These formulations are shown to be consistent with the predictions of continuum level models for the hyperelastic deformation of RBC, and are compared with recent experimental studies of whole-cell deformation using optical tweezers stretch...
متن کاملDirect measures of large, anisotropic strains in deformation of the erythrocyte cytoskeleton.
The erythrocyte's spectrin-actin membrane skeleton is directly shown to be capable of sustaining large, anisotropic strains. Photobleaching of an approximately 1-micrometer stripe in rhodamine phalloidin-labeled actin appears stable up to at least 37 degrees C, and is used to demonstrate large in-surface stretching during elastic deformation of the skeleton. Principal extension or stretch ratio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biophysical journal
دوره 75 3 شماره
صفحات -
تاریخ انتشار 1998